1,182 research outputs found

    Gyroscopic control of a rigid body constrained to rotate about a fixed axis

    Get PDF
    Gyroscopic control of spin rate or orientation of rigid bodies constrained to rotate about fixed axi

    On the CSFT approach to localized closed string tachyons

    Full text link
    We compute the potential for localized closed string tachyons in bosonic string theory on the orbifold C/Z_4 using level-truncated closed string field theory. The critical points of the potential exhibit features which agree with their conjectured identification as lower-order orbifolds. However this case also raises some questions regarding the quantitative predictions associated with these conjectures.Comment: 20 pages, 3 figures, v2: The relation between the flat space and orbifold gravitational constants has been corrected. This resolves the puzzle of multiple predictions, but worsens the agreement between the depth of the potential and the change in the deficit angl

    A holographic proof of the strong subadditivity of entanglement entropy

    Full text link
    When a quantum system is divided into subsystems, their entanglement entropies are subject to an inequality known as "strong subadditivity". For a field theory this inequality can be stated as follows: given any two regions of space AA and BB, S(A)+S(B)≥S(A∪B)+S(A∩B)S(A) + S(B) \ge S(A \cup B) + S(A \cap B). Recently, a method has been found for computing entanglement entropies in any field theory for which there is a holographically dual gravity theory. In this note we give a simple geometrical proof of strong subadditivity employing this holographic prescription.Comment: 9 pages, 3 figure

    Strong subadditivity and the covariant holographic entanglement entropy formula

    Full text link
    Headrick and Takayanagi showed that the Ryu-Takayanagi holographic entanglement entropy formula generally obeys the strong subadditivity (SSA) inequality, a fundamental property of entropy. However, the Ryu-Takayanagi formula only applies when the bulk spacetime is static. It is not known whether the covariant generalization proposed by Hubeny, Rangamani, and Takayanagi (HRT) also obeys SSA. We investigate this question in three-dimensional AdS-Vaidya spacetimes, finding that SSA is obeyed as long as the bulk spacetime satisfies the null energy condition. This provides strong support for the validity of the HRT formula.Comment: 38 page

    Interfacial Studies in Semiconductor Heterostructures by X-Ray Diffraction Techniques

    Get PDF
    X-ray radiation is a non-destructive probe well suited to assess structural perfection of semiconductor material. Three techniques are used to study the interfacial roughness, period fluctuations and annealing-induced interdiffusion in various superlattice structures. Reflectivity of long period Si/Si1-xGex multiple quantum wells reveals an asymmetry oriented along the direction of miscut in the interface roughness with the Si1-xGex to Si interfaces being about twice as rough (0.5 versus 0.3 nm) as the Si to Si1-xGex interfaces. For Si-Si0.65Ge0.35 multiple quantum wells, diffuse scattering is minimal for a growth temperature of 550°C and increases substantially at very low (250°C) or high (750°C) growth temperatures. In (SimGen)p short period superlattices, the X-ray reflectivity data are consistent with interfacial mixing over about two monolayers and thickness fluctuations of about 5% vertically in the structures. For superlattices grown on vicinal surfaces, the roughness spectrum is correlated with the surface miscut orientation. Double-crystal X-ray diffraction using symmetrical and asymmetrical reflections has been used to study epitaxial lattice distortion and strain relaxation in InGaAs/GaAs heterostructures grown on (100) on-orientation and 2° off (100) GaAs surfaces. It is shown that thick InGaAs films retain an appreciable fraction of their initial strain and that their crystal lattice is triclinically distorted. The magnitude of the deformation is larger when growth is carried out on a vicinal surface

    A numerical approach to finding general stationary vacuum black holes

    Full text link
    The Harmonic Einstein equation is the vacuum Einstein equation supplemented by a gauge fixing term which we take to be that of DeTurck. For static black holes analytically continued to Riemannian manifolds without boundary at the horizon this equation has previously been shown to be elliptic, and Ricci flow and Newton's method provide good numerical algorithms to solve it. Here we extend these techniques to the arbitrary cohomogeneity stationary case which must be treated in Lorentzian signature. For stationary spacetimes with globally timelike Killing vector the Harmonic Einstein equation is elliptic. In the presence of horizons and ergo-regions it is less obviously so. Motivated by the Rigidity theorem we study a class of stationary black hole spacetimes, considered previously by Harmark, general enough to include the asymptotically flat case in higher dimensions. We argue the Harmonic Einstein equation consistently truncates to this class of spacetimes giving an elliptic problem. The Killing horizons and axes of rotational symmetry are boundaries for this problem and we determine boundary conditions there. As a simple example we numerically construct 4D rotating black holes in a cavity using Anderson's boundary conditions. We demonstrate both Newton's method and Ricci flow to find these Lorentzian solutions.Comment: 43 pages, 7 figure

    Tachyon Condensation with B-field

    Get PDF
    We discuss classical solutions of a graviton-dilaton-B_{\mu\nu}-tachyon system. Both constant tachyon solutions, including AdS_3 solutions, and space-dependent tachyon solutions are investigated, and their possible implications to closed string tachyon condensation are argued. The stability issue of the AdS_3 solutions is also discussed.Comment: 10 pages, references adde
    • …
    corecore